

High-speed diode

DESCRIPTION

The BAS316 is a high-speed switching diode fabricated in planar technology, and encapsulated in the SOD323(SC76) SMD plastic package.

FEATURES

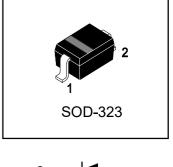
- · Ultra small plastic SMD package
- · High switching speed: max. 4 ns
- · Continuous reverse voltage: max. 75 V
- · Repetitive peak reverse voltage: max. 100 V
- · Repetitive peak forward current: max. 500 mA.
- \cdot We declare that the material of product compliance with RoHS requirements.
- S- Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

APPLICATIONS

· High-speed switching in e.g. surface mounted circuits.

ORDERING INFORMATION

Device	Marking	Shipping
BAS316 S-BAS316	Z9	3000 Tape & Reel


ELECTRICAL CHARACTERISTICS T j=25°C unless otherwise specified.

SYMBO	L PARAMETER	CONDITIONS	MAX.	UNIT
V _F	forward voltage	see Fig.2 I _F =1 mA	715	mV
		I _F = 10 mA	855	mV
		I _F =50 mA	1	V
		I _F = 150 mA	1.25	V
I _R	reverse current	see Fig.4 V $_{R}$ = 25 V	30	nA
		V _R =75 V	1	μA
		V _R = 25 V; T _j = 150 °C	30	μA
		V _R = 75 V; T _j = 150 °C;	50	μA
C d	diode capacitance	$f = 1 \text{ MHz}; V_{R} = 0; \text{ see Fig.5}$	2	pF
t rr	reverse recovery time	when switched from $I_F = 10 \text{mA}$ to $I_R = 10 \text{mA}$;	4	ns
		R $_{L}$ = 100 Ω ; measured at I $_{R}$ = 1 mA; see Fig.6		
V _{fr}	forward recovery voltage	when switched from IF = 10 mA; tr = 20 ns; see Fig.7	1.75	V

RUIL

LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{RRM}	repetitive peak reverse voltage		-	100	V
VR	continuous reverse voltage		_	75	V
V _{R(RMS)}	RMS reverse voltage		_	53	V
I F	continuous forward current		_	250	mA
I _{FRM}	repetitive peak forward current		_	500	mA
I _{FSM}	non-repetitive peak forward current	square wave; T _j =25°C prior to			
		surge; see Fig.3			
		t =1µs	_	5	А
		t =1 ms	_	1	А
		t =1 s	_	0.5	А
P tot	total power dissipation			200	mW
$R_{\theta JA}$	thermal resistance junction to ambient air		_	625	°C/W
T _{stg}	storage temperature		-55	+150	°C
Τj	junction temperature		-	150	°C

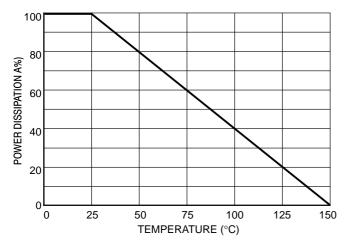


Fig.1 Steady State Power Derating

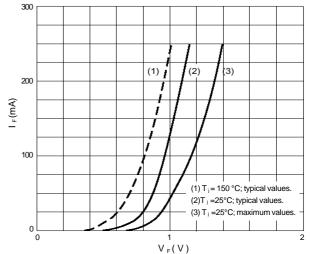
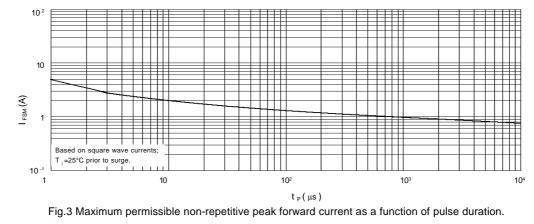
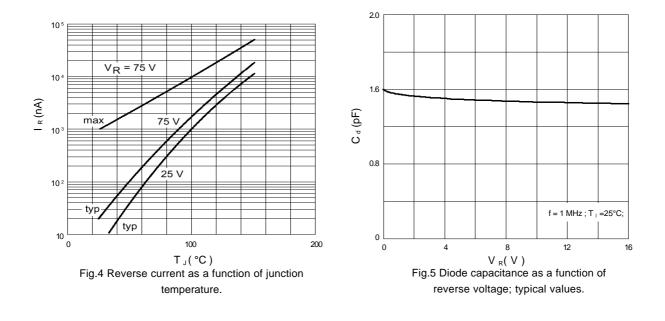
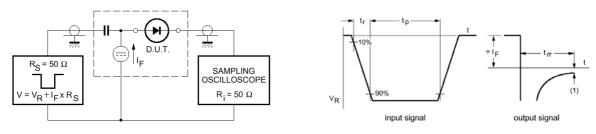
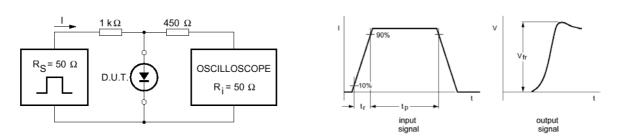



Fig.2 Forward current as a function of forward voltage.


^{361°}Circuit Protection System



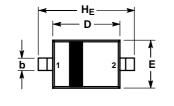
Specifications are subject to change without notice. Please refer to http://www.ruilon.com.cn for current information.


RUIL

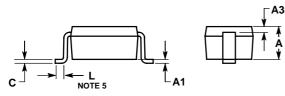
(1) I_R=1 mA. Input signal: reverse pulse rise time t $_r$ = 0.6 ns; reverse voltage pulse duration t $_p$ = 100 ns; duty factor δ = 0.05; Oscilloscope: rise time t = 0.35 ns.

Fig.6 Reverse recovery voltage test circuit and waveforms.

Input signal: forward pulse rise time t_i = 20 ns; forward current pulse duration t_i \ge 100 ns; duty factor $\delta \le 0.005$. Fig.7 Forward recovery voltage test circuit and waveforms.


Page:3

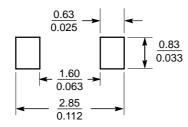
Specifications are subject to change without notice. Please refer to http://www.ruilon.com.cn for current information.


Revised: 2022-02-22

PACKAGE DIMENSIONS

SOD-323

RUIL



- NOTES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETERS.
 LEAD THICKNESS SPECIFIED PER L/F DRAWING WITH SOLDER PLATING.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
 DIMENSION L IS MEASURED FROM END OF RADIUS.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.80	0.90	1.00	0.031	0.035	0.040
A1	0.00	0.05	0.10	0.000	0.002	0.004
A3	0.15 REF		0.006 REF			
b	0.25	0.32	0.4	0.010	0.012	0.016
С	0.089	0.12	0.177	0.003	0.005	0.007
D	1.60	1.70	1.80	0.062	0.066	0.070
Е	1.15	1.25	1.35	0.045	0.049	0.053
L	0.08			0.003		
HE	2.30	2.50	2.70	0.090	0.098	0.105

SOLDERING FOOTPRINT*

Specifications are subject to change without notice. Please refer to http://www.ruilon.com.cn for current information.

