

Power MOSFET

20 V, 285 mA, P-Channel with ESD Protection, SOT-723

Features

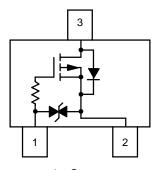
- Enables High Density PCB Manufacturing
- 44% Smaller Footprint than SC-89 and 38% Thinner than SC-89
- Low Voltage Drive Makes this Device Ideal for Portable Equipment
- Low Threshold Levels, V_{GS(TH)} < 1.3 V
- Low Profile (< 0.5 mm) Allows It to Fit Easily into Extremely Thin Environments such as Portable Electronics
- Operated at Standard Logic Level Gate Drive, Facilitating Future Migration to Lower Levels Using the Same Basic Topology
- These are Pb–Free Devices
- S- Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

Applications

- Interfacing, Switching
- High Speed Switching
- Cellular Phones, PDAs

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise stated)

Param	Symbol	Value	Unit			
Drain-to-Source Voltage	V _{DSS}	20	V			
Gate-to-Source Voltag	V _{GS}	±10	V			
Continuous Drain	Steady State	T _A = 25°C		255		
Current (Note 1)	State	T _A = 85°C	I _D	185	mA	
	t ≤ 5 s	T _A = 25°C		285		
Power Dissipation (Note 1)	Steady State T _A = 25°C		P _D	440	mW	
	t ≤ 5 s	. A 200	В	545		
Continuous Drain	Steady	T _A = 25°C	I _D	210	mA	
Current (Note 2)		T _A = 85°C		155		
Power Dissipation (Note 2)	State	T _A = 25°C	P _D	310	mW	
Pulsed Drain Current	Pulsed Drain Current $t_p = 10 \mu s$				mA	
Operating Junction and	T _J , T _{STG}	–55 to 150	°C			
Source Current (Body I	IS	286	mA			
Lead Temperature for S (1/8" from case for 10 s	TL	260	°C			


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. Surface—mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces)
- 2. Surface-mounted on FR4 board using the minimum recommended pad size.

NTK3043P S-NTK3043P

V _{(BR)DSS}	R _{DS(on)} TYP	I _D Max
20 V	1.5 Ω @ 4.5 V	
	2.4 Ω @ 2.5 V	285 mA
	5.1 Ω @ 1.8 V	200 11174
	6.8 Ω @ 1.65 V	

Top View

- 1 Gate
- 2 Source
- 3 Drain

MARKING DIAGRAM

SOT-723 CASE 631AA

KB = Device Code
M = Date Code

ORDERING INFORMATION

Device	Package	Shipping [†]		
NTK3043P S-NTK3043P	SOT-723*	8000 / Tape & Reel		

- †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.
- *These packages are inherently Pb-Free.

Revised: 2022-02-10

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 3)	$R_{\theta JA}$	280	
Junction-to-Ambient – t = 5 s (Note 3)	$R_{\theta JA}$	228	°C/W
Junction-to-Ambient - Steady State Minimum Pad (Note 4)	$R_{ heta JA}$	400	

- 3. Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces)
- 4. Surface-mounted on FR4 board using the minimum recommended pad size.

Parameter	Test Condition		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						1	
Drain-to-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 100 \mu\text{A}$		V _{(BR)DSS}	20			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	I _D = 100 μA, Reference to 25°C		V _{(BR)DSS} /T _J		27		mV/°C
Zero Gate Voltage Drain Current	V _{GS} = 0 V,	T _J = 25°C	I _{DSS}			1	
	V _{DS} = 16 V	T _J = 125°C				10	μΑ
Gate-to-Source Leakage Current	$V_{DS} = 0 \text{ V}, V_{GS}$	_S = ±5 V	I _{GSS}			1	μΑ
ON CHARACTERISTICS (Note 3)			•		•		
Gate Threshold Voltage	., ., .		V _{GS(TH)}	0.4		1.3	V
Gate Threshold Temperature Coefficient	$V_{GS} = V_{DS}$, $I_D = 250 \mu A$		V _{GS(TH)} /T _J		-2.4		mV/°C
Drain-to-Source On Resistance	$V_{GS} = 4.5V, I_D = 10 \text{ mA}$		R _{DS(ON)}		1.5	3.4	
	V _{GS} = 4.5V, I _D = 255 mA				1.6	3.8	Ω
	$V_{GS} = 2.5 \text{ V}, I_D = 1 \text{ mA}$				2.4	4.5	
	$V_{GS} = 1.8 \text{ V}, I_D = 1 \text{ mA}$			5.1	10]	
	$V_{GS} = 1.65 \text{ V}, I_D = 1 \text{ mA}$				6.8	15	
Forward Transconductance	$V_{DS} = 5 \text{ V}, I_D =$	g _{FS}		0.275		S	
CHARGES, CAPACITANCES AND GAT	E RESISTANCE						
Input Capacitance			C _{ISS}		11		
Output Capacitance	$V_{GS} = 0 V, f = 1 MH$	z, V _{DS} = 10 V	C _{OSS}		8.3		pF
Reverse Transfer Capacitance			C _{RSS}		2.7		
SWITCHING CHARACTERISTICS, VGS	= 4.5 V (Note 4)						
Turn-On Delay Time		t _{d(ON)}		13			
Rise Time	V_{GS} = 4.5 V, V_{DD} = 5 V, I_{D} = 10 mA, R_{G} = 6 Ω		t _r		15		ns
Turn-Off Delay Time			t _{d(OFF)}		94		
Fall Time		t _f		55			
DRAIN-SOURCE DIODE CHARACTER	ISTICS						
Forward Diode Voltage	T _J = 25°C		V_{SD}		0.83	1.2	· /
	$V_{GS} = 0 \text{ V. Is} = 286 \text{ mA}$				1		· · · /

Forward Diode Voltage	V 0.V I 000 mA	T _J = 25°C	V_{SD}	0.83	1.2	
	$V_{GS} = 0 \text{ V, } I_{S} = 286 \text{ mA}$	T _J = 125°C		0.69		V
Reverse Recovery Time		t _{RR}	9.1			
Charge Time	$V_{GS} = 0 \text{ V}, V_{DD} = 20 \text{ V}, d$ $I_{S} = 286 \text{ r}$	ta	7.1		ns	
Discharge Time	I _S = 286 r	t _b	2.0			
Reverse Recovery Charge		Q _{RR}	3.7		nC	

- 5. Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%
 6. Switching characteristics are independent of operating junction temperatures

TYPICAL PERFORMANCE CURVES

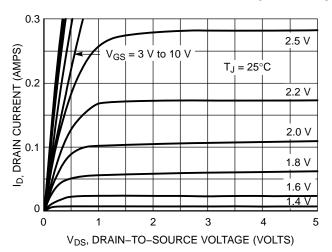


Figure 1. On-Region Characteristics

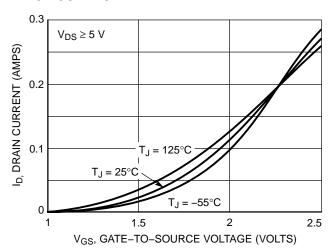


Figure 2. Transfer Characteristics

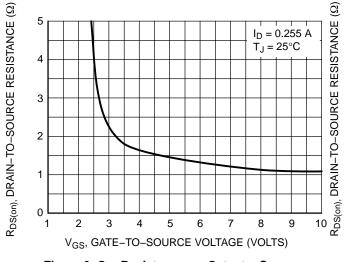


Figure 3. On-Resistance vs. Gate-to-Source Voltage

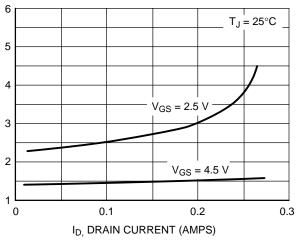


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

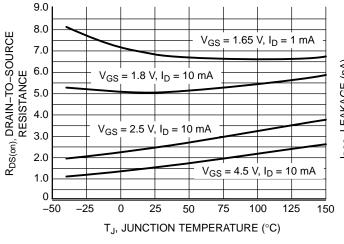
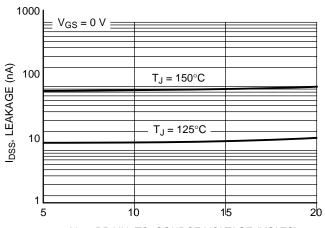
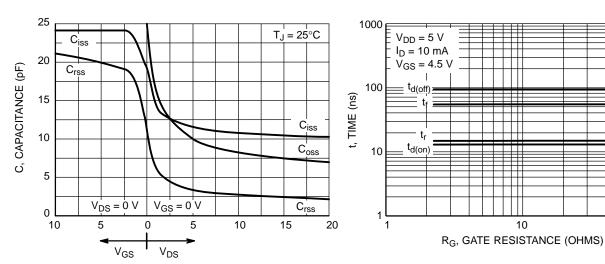



Figure 5. On–Resistance Variation with Temperature

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 6. Drain-to-Source Leakage Current vs. Voltage



Revised: 2022-02-10

TYPICAL PERFORMANCE CURVES

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (V) Figure 7. Capacitance Variation

Figure 8. Resistive Switching Time Variation vs. Gate Resistance

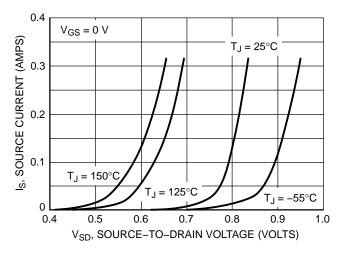
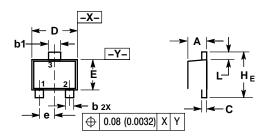


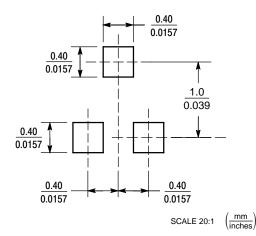
Figure 9. Diode Forward Voltage vs. Current

Revised: 2022-02-10



100

PACKAGE DIMENSIONS


SOT-723

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM TRUBULED OF DEACH MATERIAL. THICKNESS OF BASE MATERIAL.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD
- FLASH, PROTRUSIONS OR GATE BURRS.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.45	0.50	0.55	0.018	0.020	0.022	
b	0.15	0.21	0.27	0.0059	0.0083	0.0106	
b1	0.25	0.31	0.37	0.010	0.012	0.015	
С	0.07	0.12	0.17	0.0028	0.0047	0.0067	
D	1.15	1.20	1.25	0.045	0.047	0.049	
Е	0.75	0.80	0.85	0.03	0.032	0.034	
е	0.40 BSC 0			.016 BS	С		
ΗE	1.15	1.20	1.25	0.045	0.047	0.049	
7	0.15	0.20	0.25	0.0059	0.0079	0.0098	

SOLDERING FOOTPRINT*

Revised: 2022-02-10

